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Introduction

The mRNA Design Challenge

Critical for COVID-19 vaccines (Pfizer/BioNTech,
Moderna)

Multiple objectives: accessibility, stability,
translation efficiency

Hard constraint: Preserve amino acid sequence

The Problem

The discrete-continuous gap prevents
gradient-based optimization

Existing Approaches Fall Short:

1 Discrete optimization (GA, SA): Slow, no
theoretical guarantees

2 Straight-Through Estimator: Lacks
systematic constraint mechanisms

3 No unified framework for gradient
optimization + biological constraints

Core Innovation: Decoupled Architecture

Optimization Track Evaluation Track

Gradient
Update

Sequence Logits: Θ

Transform: Π

P = Π(Θ)

Candidate Pool

(S1, fmodel(S1))

(S2, fmodel(S2))

(S3, fmodel(S3))

...

Mode: Soft or Hard

Ψsoft

S = P

Direct Gradient

ΨHard

S = discretize(P)

STE Gradient

Predictor

fmodel(S)

(Fixed Parameters)

Optimization Objective

Best Sequence

Every iteration:
Ψhard: Discretize P → S

Store (S, fmodel(S))

Key Insight: Models accept probability
distributions as input

Core Objective:

min
Θ

L = min
Θ

fmodel(T (Θ)), T = Ψ ◦ Π
ID3 Pipeline:

Θ P S LΠ Ψ fmodel

∇
Π: Parameter-to-Probability (Gumbel-Softmax)

Ψ: Probability-to-Sequence (Soft/Hard modes)

∇: Gradient-based updates

Transformation Functions:
Parameter-to-Probability (Π):

Pdet = softmax(Θ/σ)

Psto = softmax((Θ + g)/σ)

where g is Gumbel noise, σ is temperature parameter
Probability-to-Sequence (Ψ):

Ψsoft(P) = P

Ψhard(P) = discretize(P)

where discretize uses Straight-Through Estimator (STE)

Four Operational Modes:

Mode Parameter Output

Det.Soft Deterministic Continuous
Det.Hard Deterministic Discrete
Sto.Soft Stochastic Continuous
Sto.Hard Stochastic Discrete

Three Constraint Mechanisms
Challenge: Optimize RNA while preserving amino acids

1. Codon Profile Constraint
Parameter Domain:

Θcodon = {θj ,c : c ∈ C(yj)}
Probability Computation:

Pcodon = softmax(θj ,c/σ)c∈C(yj)

Mathematically impossible to violate constraints

40-60% reduction:
∑M

j=1 |C(yj)| vs L× 4

2. Amino Matching Softmax
Parameter Domain:

Θ ∈ RL×4 (full RNA space)

where Θ(j) ∈ R3×4 for j-th amino acid’s codon
Probability Computation:

Pcodon,c = softmax(⟨Θ(j), E [c]⟩/σ)c∈C(yj)
E [c] ∈ {0, 1}3×4: One-hot encoding of codon c

⟨Θ(j), E [c]⟩: Inner product similarity
Only valid codons get non-zero probabilities

3. Lagrangian Multiplier
Parameter Domain:

Θ ∈ RL×4, P ∈ [0, 1]L×4

Total Loss with Penalty:

Ltotal = fmodel(T (Θ)) + λ · C(P)
Constraint Violation Measure:

C(P) = 1

M

M∑
j=1

min
c∈C(yj)

∥P(j) − E [c]∥2

L2 distance to closest valid codon
Adaptive Multiplier Update:

λ(t+1) = max(0, λ(t) + ηt · g (t)), ηt = η0/
√
t + 1

Subgradient method with decaying step size

4 Modes × 3 Mechanisms = 12 Variants

Applications

1. Accessibility Optimization with DeepRaccess1

Loss Function:

L = faccess(T (Θ))ATG−19:+15

s.t. AA(T hard(Θ)) = y

∇θ Iterate

Target
Amino
Acids

ID3 Optimization Framework

mRNA:
5’UTR

GGGAAUUG...ACAU

CDS

AUGC...CUUAAGCCG

3’UTR

GAUCCGGC...UGAA

Target region
-19 to +15 (35nt)

DeepRaccess
Predictor

Objective:

minθ Laccess(T (θ))

s.t. Amino acids preserved

Goal: Minimize RNA accessibility in translation initiation region

1DeepRaccess predictor: Hara et al., Frontiers in Bioinformatics, 3:1275787, 2023

2. CAI Co-Optimization
CAI-aware Discretization:

Ψhard
CAI (Pcodon) = arg max

S
P(S |Pcodon)

s.t. CAI(S) ≥ threshold

Implementation:

P(γ) = γ ·worganism + (1− γ) · Pcodon

Binary search finds optimal γ ∈ [0, 1] satisfying CAI threshold

Alternative: Multi-objective Joint Loss

Ltotal = Laccess + λCAI · LCAI

Gradient-based, flexible, works for both soft and hard modes

Theoretical Guarantees
First convergence proof for sequence optimization:
Gradient descent converges to stationary points under Lipschitz
continuity, covering all 12 variants. See supplementary materials
for detailed proofs.

Experimental Setup
Experiments:

12 variants × 12 proteins
20 independent runs
1000 evaluations/run

Baselines:

Genetic Algorithm (GA)
Simulated Annealing (SA)
C10: Exhaustive (1.36M)

Dataset (12 proteins,
64-1273 AA)
ID Protein AA

O15263 Defensin beta 4A 64
P99999 Cyt c (H.s.) 105
P00004 Cyt c (E.c.) 105
P01308 Insulin 110
P01825 Immuno. HC 116
P31417 FABP2 132
P61626 Lysozyme C 148
P42212 GFP 238
P04637 p53 393
P0DTC9 SARS-CoV-2 N 419
P0CG48 Polyubiquitin-C 685
P0DTC2 SARS-CoV-2 Spike 1273

Mechanism & Strategy Analysis

Constraint Mechanism Comparison

Codon Profile
Constraint

Amino 
Matching Softmax

Lagrangian
Multiplier

Constraint Mechanism
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A) Performance by Constraint Mechanism

Access-only
Access + CAI with penalty
Access + CAI without penalty

Det.Soft Det.Hard Sto.Soft Sto.Hard
Optimization Strategy
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B) Performance by Strategy

Access-only
Access + CAI with penalty
Access + CAI without penalty

Codon Profile and Amino Matching achieve similar performance

Convergence by Strategy
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(A) Accessibility Only

(B) Accessibility-CAI

Soft and hard comparable for single objective; hard superior for
multi-objective

Case Study: O15263 (Defensin beta 4A)

Optimization Trajectory using Amino.Sto.Soft:
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O15263 (Equine Cytochrome C) - Amino Matching Softmax Sto.Soft Comprehensive Optimization Analysis

Rapid convergence: 3.28 → 0.97 kcal/mol with systematic AU balancing

Performance Comparison & Conclusion

Accessibility-only
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ID3 Framework:
 Amino Matching Softmax (A.)
 Codon Profile Constraint (C.)
 Lagrangian Multiplier (L.)

Strategy Types:
 Det.Soft (D.S)
 Det.Hard (D.H)
 Sto.Soft (S.S)
 Sto.Hard (S.H)

10/12 variants outperform all baselines

Access + CAI Joint
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Baseline Algorithms:
 Combinatorial 10-codon CAI>0.8 Optimal (C10-CAI)
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ID3 Framework:
 Amino Matching Softmax (A.)
 Codon Profile Constraint (C.)
 Lagrangian Multiplier (L.)

Strategy Types:
 Det.Soft (D.S)
 Det.Hard (D.H)
 Sto.Soft (S.S)
 Sto.Hard (S.H)

CAI Penalty Mode:
 No Penalty
 With Penalty (P.)

Hard constraints excel in multi-objective optimization

Conclusion

Key Contributions:

Decoupled optimization-evaluation architecture

Three systematic constraint mechanisms

First convergence proof for sequence optimization

12 systematic variants covering optimization landscape

Superior performance across diverse proteins

Impact:

Principled foundation for gradient-based discrete sequence
optimization

Applications in mRNA vaccines and therapeutics

Extensible to DNA and protein design
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